• SyncroPatch 384/768i

    全球最高通量的全自动膜片钳系统
  • SyncroPatch 384/768i

    平行记录384个细胞 => 最高可升级到768个
  • SyncroPatch 384/768i

    真正的高通量与GΩ级封接
  • SyncroPatch 384/768i

    Analysis Software even more powerful than before
  • SyncroPatch 384/768i

    高科技保证实验的灵活性

2020 - Conservation and divergence in NaChBac and NaV1.7 pharmacology reveals novel drug interaction mechanisms

 icon sp96   SyncroPatch 768PE (a predecessor model of the SyncroPatch 768i instrument) publication in Nature Scientific Reports Journal (2020)

Authors:

Zhu W., Li T., Silva J. R., Chen J.

Journal:

Nature Sci Rep 10, 10730 (2020)  doi: 10.1038/s41598-020-67761-5


Abstract: 

Voltage-gated Na+ (NaV) channels regulate homeostasis in bacteria and control membrane electrical excitability in mammals. Compared to their mammalian counterparts, bacterial NaV channels possess a simpler, fourfold symmetric structure and have facilitated studies of the structural basis of channel gating. However, the pharmacology of bacterial NaV remains largely unexplored. Here we systematically screened 39 NaV modulators on a bacterial channel (NaChBac) and characterized a selection of compounds on NaChBac and a mammalian channel (human NaV1.7). We found that while many compounds interact with both channels, they exhibit distinct functional effects. For example, the local anesthetics ambroxol and lidocaine block both NaV1.7 and NaChBac but affect activation and inactivation of the two channels to different extents. The voltage-sensing domain targeting toxin BDS-I increases NaV1.7 but decreases NaChBac peak currents. The pore binding toxins aconitine and veratridine block peak currents of NaV1.7 and shift activation (aconitine) and inactivation (veratridine) respectively. In NaChBac, they block the peak current by binding to the pore residue F224. Nonetheless, aconitine has no effect on activation or inactivation, while veratridine only modulates activation of NaChBac. The conservation and divergence in the pharmacology of bacterial and mammalian NaV channels provide insights into the molecular basis of channel gating and will facilitate organism-specific drug discovery.


Download here.

返回总览

SyncroPatch 384i brochure

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.