我们的技术: 原理与实现
我们的故事从2003年发布了Port-a-Patch开始的: 这是世界上最小的膜片钳系统。从那时起,我们不断扩大产品线,在 Port-a-Patch成功与经验的基础上我们增加了通量与试验灵活性,现在我们拥有中等与高通量全自动膜片钳设备、自动脂双层记录设备、 基于SSM的电生理设备、心肌细胞阻抗与场电位记录设备。我们将持续听取我们用户的意见并发展我们的技术来满足用户在科研与药物开发中的需求。
全自动膜片钳
基于平板膜片钳技术的全自动膜片钳设备
膜片钳技术是实时研究离子通道的金标准。凭借其出色的信号质量,可以研究复杂的生物物理特性和离子通道的效功能。
随着基于平面芯片的全自动膜片钳技术的发展,膜片钳方法的自动化成为可能。 与传统的膜片钳技术相比,全自动膜片钳可提高通量和易用性,使更多用户可以使用。
2003年推出自动平面膜片钳设备Port-a-Patch,Nanion成为“市场上的先行者”。从那时起,我们开发了更多的仪器,这些都是可以实现“真正的GΩ级封接” ,基于平面膜片钳技术,提供各种各样的实验可能性,扩展了传统膜片钳的功能。
Nanion的平板膜片钳设备
Port-a-Patch 是一款自动膜片钳设备,拥有小巧的体积,可以记录离子通道与脂双层。
Patchliner 是一款全自动膜片钳,可用于中等通量的灵活实验。
SyncroPatch 384 是一款高通量的膜片钳设备,可以升级到实现最高20,000 和数据量/天的高通量记录。The number of parallel recordings can be reduced to 32 and multiples thereof for assay development and smaller screening projects.
推荐的平板膜片钳文献
脂双层记录
人工脂双层记录:
分析不含其他蛋白质的通道和纳米孔
使用人工脂质双层记录可以监测离子通道活性,其中可以测量许多类型的重建离子通道和纳米孔。不同于在整个的活细胞上进行的实验,人工双层为研究离子通道和其他完整的膜蛋白提供了不同的方法。主要优点在于完全没有任何不需要的干扰物质,以及对目标分子进行单一通道水平的方便和可重复的研究。这是通过将纯化的蛋白质或具有精确控制的组成的蛋白质 - 脂质体的融合引入到没有任何污染物的高度绝缘的磷脂膜中来实现的。该技术能实现优异的电密封,能实现极其敏感的监测(低至单分子水平),同时可以精确控制膜和掺入蛋白质的组成。另外,仅需要来自表达靶离子通道的细胞的一小部分膜提取物。
Nanion基于芯片的平面脂双层设备
Orbit mini 结合结合了最先进的放大器技术,可实现简单与可重复的对四个平面脂双层进行研究。 选配的自动温度控制使得能够在生理温度下或对温度敏感通道(例如TRP通道)进行实验。
Orbit 16 TC具有比Orbit mini更高的通量,并可自动形成脂双层,可最大限度地提高系统的易用性和实验的可重复性。The automated temperature control enables experiments at physiological temperatures or on temperature-sensitive species such as TRP channels.
Vesicle Prep Pro为双层记录生成巨型单层囊泡(GUV)的有用设备。
基于芯片的双层记录的推荐文献
基于SSM的电生理
固体支撑膜(SSM):测量转运体电流

基于固体支撑膜(SSM)的电生理技术不同于传统的电生理技术,例如膜片钳,因为不需要活细胞,而是多种天然或人工膜囊泡。使用的样品范围从蛋白脂质体中的重构蛋白到来自细胞器或质膜的膜碎片。对于样品制备,可以使用细菌细胞,真核细胞培养物或天然组织。在实验之前将膜样品添加到SSM中。这导致膜稳定地吸附到SSM并形成电容耦合的复合膜。 SSM本身由硫醇化金涂层传感器芯片顶部的脂质单层组成。与膜片钳相比,一个重要的优点是传感器尺寸最大可达3 mm。这允许同时测量大约10^9个转运体并且产生信噪比的显着改善。因此,可以研究低转运率的目标电生理学表征。
与传统电生理学的差异

基于SSM的电生理技术与传统电生理技术之间的重要区别在于测量原理。在膜片钳电生理学中,由于在测量期间电压(驱动力)钳制,可以获得静止电流。在基于SSM的电生理学中,通过快速溶液交换建立的底物梯度是主要驱动力。带电底物或离子向脂质体或囊泡的转运产生膜电位。可以通过膜和传感器金层上的SSM之间的电容耦合来检测该电位。简而言之:测量由于电生质传递引起的膜电位的变化。在某些时候,膜电位等于化学驱动力,运输过程停止。这就是为什么用基于SSM的电生理学测量的任何电流都是瞬态的。峰值电流幅度反映了稳态条件下的转运蛋白活性。
由于电流衰减很快,因此一次测量仅需一秒钟。 由于SSM的高稳定性,可以使用相同的传感器和不同的缓冲条件进行多次测量,以确定动力学参数,例如EC 50 ,IC 50 或甚至速率常量。
Nanion的基于芯片的固体支撑膜设备
SURFE²R N1 是一款中等通量的设备,适用于基础研究与大学。
SURFE²R 96SE 是一款高通量设备,整合在CyBio Felix移液平台中。
推荐阅读与影像
胞外记录技术
阻抗与胞外场电位 (EFP)记录
阻抗和胞外场电位记录是非侵入性的“非标记”方法,非常适用于分析可兴奋的,完整的培养细胞的细胞收缩和动作电位,例如,心肌细胞和神经元。
胞外场电位是细胞产生的电位,例如神经或肌肉细胞的细胞外。 电生理学研究使用细胞外微电极研究这些电位。 在这些实验中,细胞外场电位被检测为电势。对于个体细胞,细胞外电位的时间过程理论上与跨膜电流成反比。
电阻抗是在施加电压时对电流的电阻的测量,具有幅度和相位。换句话说,它是在特定频率ω下单个复指数的电压 - 电流比。可以以欧姆直接测量或显示阻抗。
实际上:接种到电阻抗芯片或板上的细胞覆盖电极,从而产生更高的可检测电阻。阻抗测定可以在一个频率或一定频率范围内进行。取决于施加的频率ω,电子穿过或穿过细胞,因此可以检测细胞形态和覆盖率的不同参数。电阻抗测量适合于在长期研究中应用毒理学物质或影响细胞-细胞或者细胞-基质接触的物质时检测心肌细胞的收缩运动,细胞生长和运动以及细胞形态的变化。
Nanion基于96孔板的阻抗与EFP记录设备
CardioExcyte 96 平行记录心肌细胞的动作电位(EFP)和收缩运动(阻抗)。
推荐文献
推荐演讲
光遗传
光遗传学:光刺激触发细胞中动作电位
光遗传学是一种可用于控制可兴奋细胞的新技术:可在表达特定光敏离子通道的细胞上用具有毫秒级时间精度的光脉冲对细胞进行去极化,从而准确地触发动作的电势。
光遗传学在心脏安全性研究方面提供了巨大潜力:影响心肌细胞收缩的化合物可能以依赖于使用的方式影响离子通道和受体,从而对不同的搏动率产生不同的影响。利用这种技术,可以简单地利用光脉冲在不同跳动范围内使心肌细胞起搏,以发现毒素的使用依赖效应。在iPSC分化的心肌细胞中,光遗传学致动器 通道视紫红质已被证明非常适合并被接受为模型。用于通道视紫红质的瞬时转染试剂盒可从iPSC细胞提供者获得,例如NCardia,用于在心脏安全性研究中使用光遗传学。
Nanion光遗传设备
CardioExcyte 96 是一种用于研究iPSC分化的心肌细胞的阻抗和胞外场电位的装置。 专门开发的光遗传盖“SOL”能够实现细胞的光遗传学起搏。
关于光遗传在心脏安全研究的推荐阅读
巨型单层囊泡 (GUV)
GUV:囊泡的多种应用
囊泡是由脂双层卷成的球型泡封闭少量水并将其与囊泡外的水分开。 由于与细胞膜基本相似,囊泡已广泛用于研究脂质双分子层的性质。 如此频繁使用囊泡的另一个原因是它们相对容易制造。 脱水脂质样品暴露于水中会自发形成囊泡。 这些初始囊泡通常是多层的(多壁的)并且尺寸范围从几十纳米到几微米。
需要进一步的方法将这些初始囊泡破碎成均匀直径的较小的单壁囊泡,成为直径为50nm至200nm的小单层囊泡(SUVs)。 由于人造SUV可以大量生产,因此它们适用于散状材料研究,例如X射线衍射,以确定晶格间距,差分扫描量热法以及相变。 双极化干涉测量法可以以无标记测定形式测量单层和多层结构以及囊泡的插入和破坏。 还可以用荧光染料标记囊泡,以允许基于FRET的灵敏融合测定。
尽管有这种荧光标记,但由于它们非常小,因此通常很难对SUV进行详细的成像。 为了解决这个问题,研究人员开发出了巨大的单层囊泡(GUV)。 GUV足够大(几十微米),可以用传统的荧光显微镜研究。 由于这个原因,研究人工脂质体中的脂筏常用GUV进行。 与有支撑的的双层结构相比,GUV呈现更“自然”的环境,因为周围没有固体表面导致的缺陷或使蛋白质变性。
Nanion的巨型单层囊泡制备设备
The Vesicle Prep Pro 是一款通过电膨化制备GUV的设备。
GUV可以在以下设备中应用:
SURFE²R: 基于SSM的电生理
SURFE²R: 基于SSM的电生理